skip to main content


Search for: All records

Creators/Authors contains: "Gebrehiwot, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-8s model achieved 75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s. 
    more » « less
  2. null (Ed.)
    Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event. 
    more » « less